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Abstract 

Predicting flood discharges in the rivers of an ungauged basin is tedious because essential hydrological data is lacking. In 

mountainous countries like Nepal, the design of hydraulic structures in these steeply sloped rivers is of prime importance 

for flood control, as well as for electricity generation where hydraulic head is gained over short, steep reaches. This study 

illustrates a variety of approaches that can be used to perform flood frequency analysis of typical ungauged mountainous 

rivers, where discharge data are available from hydrologically similar catchments. The various methods are evaluated by 

comparing the goodness of fit of an array of hydrologic distribution functions. From each probability density function or 

regional empirical method, we predict the multi-year return periods for floods, information that is generally required to 

design the hydraulic structures. The analysis was done based on the annual maxima, peaks above threshold, and widely 

used regional empirical methods. This analysis was accomplished using the discharge data of Nayapul station near Jhapre 

Bagar collected from the Department of Hydrology and Meteorology, Government of Nepal, Kathmandu. The analysis 

and results of this study paved the way for the hydraulic design of water systems in the ungauged study region and 

demonstrated how the information acquired can be used for water resource management in catchments with similar hy-

drologic features. 
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1. Introduction 

The design and construction of water systems, as well as water resource management, requires in-depth 

knowledge of different flood events for different return periods (Tao et al. 2002). The faulty design of engi-

neering structures will have a serious economic impact due to structural damage. Over-designing or under-

designing of a hydraulic structure may result in the waste of natural resources or may compromise the struc-

tural safety (Reich 1961, 1963). Developing such designs becomes more challenging because of the impact of 

greenhouse gases, which are changing the hydrological cycle, precipitation patterns, and temperature regimes. 

Increasing temperatures are altering the physical characteristics of catchments by melting snow and glaciers 



 

 

(Singh et al. 2018). Researchers are thus challenged to devote more effort to analyzing discharges in the water 

sources for planning and management. 

Adequate discharge data are required for the study, analysis, and quantification of various parameters, includ-

ing design flood. Hydrological stations are not established in all rivers due to economic and geographical limi-

tations, and hence hydrological analysis in such areas is complicated. The availability of discharge data in Ne-

pal is limited. Rivers that descend from hilly areas of Nepal carry large amounts of sediments, so for the un-

gauged rivers, the design of hydraulic structures such as weirs, canals, sluice gates, and dams become more 

complex (Sapkota et al. 2016). Therefore, the main objective of this study is to estimate flood discharges at 

specific place in ungauged river basins for various return periods, compare estimates and determine the best 

fit. 

The discharge used for the design of a hydraulic structure is called the “design flood”. Designing hydraulic 

structures for the maximum possible flood for a catchment is very costly. Engineering structures, whose fail-

ure may lead to huge loss of lives and properties, are generally designed for floods of large return periods 

(Izinyon et al. 2011). Design flood estimation is essential for the design of hydraulic structures, flood manage-

ment and insurance studies, development, and planning. (Rahman et al. 2013). 

Hydrologic events have random probability distributions for which statistical analysis can be performed, but 

precise predictions might not be achieved. Flood frequency analysis is used to estimate design floods for sites 

along a river that uses observed flow discharge data to calculate statistical information, which is utilized to 

construct frequency distributions. There is no specific rule for the length of data required for the frequency 

analysis. Parameter estimation techniques in flood frequency analysis include the graphical method, frequency 

factor method, method of moments, and method of probability-weighted moments and L-moments (Ojha et 

al. 2008). Flood frequency estimation is a challenging task for a researcher and has been associated with con-

fusion and controversies (Bobee et al. 1993). Flood frequency analysis helps to predict future flows of differ-

ent magnitudes and provides reliable predictions in regions of similar climatic conditions. A wide range of 

research has been conducted to predict the suitable probability distribution functions for annual maximum 

flood events. Some of the commonly used probability distribution functions include general extreme value, 

log-normal, normal, Gumbel, Weibull 3P and log Pearson methods. For analysis of the short-term annual 

maximum discharge, there is no strict rule for using a particular distribution function (Alam et al. 2016). 

The bed slope is steep in the mountainous rivers where water flows rapidly, and it is necessary to predict 

floods for various return periods to design hydraulic structures. Hydropower generation is most common in 

these rivers. Therefore, designing hydraulic structures like levees, guide walls, dams, intakes, weirs, and bar-

rages need estimates of 10, 20, 50, 100, 200 etc. years return period floods to reduce the risk. Return period 

flood predictions differ based on the hydrologic distributions selected. 



 

 

2. Study area 

Modi Khola is a major tributary of the Kali Gandaki River, which originates from the Annapurna Conserva-

tion area of Nepal. The study basin (Fig. 1) has an area of 510 square kilometers. The location selected for 

study is at 28.273 N and 83.744 E, in the Parbat district. Climate varies from warm temperate to alpine (Rijal 

2007), and most of the precipitation occurs during monsoon season (June, July, August, and September). 

Quartzite, phyllitic slate, schist, and gneiss were found during a site visit. The sediment yield in the river is 

high because of the steep gradient, erosion of riverbanks, and fragile geological conditions in the upper part 

of the river basin. Modi Khola carries sediments ranging from sand to huge boulders during the monsoon, 

eroded from the banks and transported into it by its tributaries. Many hydropower projects are in operation 

or under construction; there are also new projects proposed for this river. 

 

Fig. 1. Location of study basin. 

3. Methodology 

3.1. Data collection 

Daily discharge data used in this study are collected from the Department of Hydrology and Meteorology, 

Government of Nepal, from 1976 to 2010, except data from 1980 to 1987 were not available. The flow data 

available were point discharge data measured once a day at Nayapul near Jhapre Bagar. 

 

 



 

 

3.2. Analysis 

The oldest and most common technique to estimate the daily flow of an ungauged catchment with the use of 

a reference catchment is the drainage area ratio method (Archfield, Vogel 2010; Gianfagna et al. 2015). Our 

study catchment is part of a gauged catchment therefore we used the drainage area ratio method for the 

nested watersheds. 

Q1/A1 = Q2/A2 (1) 

where Q1 and A1 are discharge and area for the gauged catchment, and Q2 and A2 are discharge and area for 

the ungauged catchment. 

Annual maximum discharge data were obtained from the dataset for each year by selecting the largest daily 

flood from that particular year. For hydrological analysis, these data were transferred to the selected outlet 

point of the study basin by the drainage area ratio method; the data are plotted in Figure 2. 

 

Fig. 2. Transfer of flow data from Nayapul (Gauged Station) to study basin. 

For flood frequency analysis using peaks above threshold, identifying such large floods from years of daily 

data is difficult. We simplified this job by taking the largest flood in a monthly interval from the chunk of 

daily discharge data. This data series cutoff value was set equal to the smallest discharge from the annual max-

ima series at Nayapul Station. The selected 61 discharge data points were then transferred to the study basin 

using the drainage area ratio method. For partial flood frequency analysis, we calculated the average return 

interval (ARI) from these selected floods. The average number of occurrences of peak flood events (k) is 

equal to 61events divided by 27 years, i.e. 2.26 events per year. After adjusting ARI to k times ARI, the flood 

values were predicted based on the adjusted ARI values from various distribution functions. 



 

 

To select the best fit probability distribution, first of all, alternative probability distribution models need to be 

analyzed. Continuous probability distributions used in the hydrology sector, including generalized extreme 

value, Gumbel maximum, log Pearson type III, log Normal (3P), normal, and Weibull 3P were fitted to the 

processed flood data. The regional empirical methods Hydest and Modified Hydest were used for predicting 

discharges for different return periods. 

3.3. Theoretical description 

3.3.1. WECS/DHM method (Hydest Method) 

The WECS/DHM method was developed by the Water and Energy Commission Secretariat, Department of 

Hydrology and Meteorology (WECS/DHM) of Nepal. This method is generally used to determine the hydro-

logical features of an ungauged basin for the pre-feasibility study of hydro-electric projects in Nepal. For this 

purpose, the whole country is considered as a single hydrological region, and the method is suitable for any 

basin with area ≥100 km2. Hydest is available in the form of an Excel file, which requires input for total 

catchment area, area of catchment below 5,000 m elevation, area of catchment below 3,000 m elevation, and 

monsoon wetness index. 

Instantaneous peak flood discharges for return periods of 2 and 100 years are: 

Q2 = 1.8767 × (Abelow 3000m + 1)0.8783 (2) 

Q100 = 14.630 × (Abelow 3000m + 1)0.7342 (3) 

Peak flood discharge for different return periods: 

QT = e (lnQ2 + Sσ) (4) 

σ = ln (Q100/Q2)/2.326 (5) 

where: Q2 – two-year instantaneous flood in m3/s; Q100 – 100-year instantaneous flood in m3/s; QT – T-year 

instantaneous flood in m3/s; Abelow 3000m – basin area below 3000 m elevation in km2; σ is a parameter; S is a 

standard normal variate whose value depends on return periods (Table 1). 

Table 1. Values of standard variates based on return periods. 

Return Period (T) in years Standard Variate (S) 

2 0 

5 0.842 

10 1.282 

20 1.645 

50 2.054 

100 2.326 

200 2.576 



 

 

3.3.2. Modified Hydest 

This method is the updated version of WECS/DHM method in which one more parameter, basin average 

elevation, is also taken into consideration. 

For 2- and 100-year return periods, flood discharges are given by: 

Q2 = 2.29(Aarea below 3000m)0.86 (6) 

Q100 = 20.7(Aarea below 3000m)0.72 (7) 

Peak flood discharge for other return periods (T): 

QT = elnQ2 + Sσ (8) 

σ = ln(Q100/Q2)/2.32 (9) 

The relationship between T and S is shown in Table 1; where: Q2 – two-year instantaneous flood in m3/s; 

Q100 – 100-year instantaneous flood in m3/s; QT – T year instantaneous flood in m3/s; Abelow 3000m – basin area 

below 3000 m elevation in km2; σ is a parameter; S is a standard normal variate whose value depends on re-

turn periods. 

3.3.3. Goodness of fit tests 

The goodness of fit technique is a method of examining how a sample of data aligns with a given distribution 

as its population (Wickramaarachchi 2016). The data were fitted in the EasyFit software 

(https://easyfit.soft32.com/) to check fits for distributions common in hydrology, and then floods for se-

lected return periods were predicted. 

4. Results and discussions 

The discharge data were obtained for 27 years, and maximum annual discharge data were calculated from 

maximum daily discharge values. Sixty-one peaks above threshold flood over a period of 27 years were taken 

to predict floods for various return periods. There is no particular rule for establishing the trim level for par-

tial frequency analysis, so we took the lowest annual maximum value as our trim level, and floods greater or 

equal to that value were fed into probabilistic distribution models. The data were evaluated with the probabil-

ity distribution functions mentioned above to determine the flood discharges for return periods of 2, 10, 20, 

50, 100, and 200 years. Comparisons of the different frequency analysis methods and empirical methods are 

shown in Tables 2, 3, and 4. 

Estimated floods are presented in Tables 2, 3, and 4 for comparative analysis. Figures 3a, 3b, and 3c also pro-

vide information about floods of different return periods using various methods. It has been found that the 

estimated flood values from different methods diverge for higher return periods. The best fits of distribution 



 

 

functions are shown by ranking in Tables 5 and 6. When designing hydraulic structures for a river like Modi 

Khola, the choice of distribution to estimate the flood for different return periods should be based on the fit 

of the distribution to the discharge data. From Table 4, we found that Hydest and Modified Hydest estimated 

smaller floods than other frequency analysis methods. 

Table 2. Floods [m3/s] of different return periods using different methods for annual maxima (GEV = generalized ex-

treme value, LP 3 = log Pearson, Type III, LN = log Normal, 3P = Three Parameter. 

  
Annual Maxima 

Return period T 
(years) 

Exceedance Probability 

(p) = 1/T 
GEV LP 3 LN (3P) 

Gumbel 
Maximum 

Normal Weibull 3P 

2 0.5 321 324 330 392 468 306 

10 0.1 756 824 836 1,073 1,062 926 

20 0.05 1,085 1,188 1,156 1,333 1,231 1,274 

50 0.02 1,762 1,900 1,698 1,670 1,420 1,793 

100 0.01 2,554 2,690 2,216 1,923 1,547 2,225 

200 0.005 3,715 3,791 2,839 2,174 1,663 2,686 

Table 3. Floods [m3/s] of different return periods using different methods for peaks above threshold. 

   
Peaks above threshold 

ARI ARI × k 
Exceedance Probability  

(p) = 1/(ARI × k) 
GEV LP 3 LN (3P) 

Gumbel 
Maximum 

Normal Weibull 3P 

2 4.519 0.221 359 378 389 603 655 446 

10 22.593 0.044 801 916 833 1,108 1,009 1,049 

20 45.185 0.022 1,180 1,353 1,124 1,316 1,126 1,381 

50 112.963 0.009 1,996 2,247 1,615 1,581 1,258 1,866 

100 225.926 0.004 3,271 3,571 2,198 1,821 1,367 2,358 

200 451.852 0.002 5,032 5,316 2,819 2,025 1,452 2,814 

Table 4. Floods [m3/s] of different return periods using empirical methods. 

 
Empirical Methods 

Return period T 
(years) 

Hydest Modified Hydest 

2 216 240 

10 438 531 

20 535 665 

50 670 858 

100 778 1016 

200 892 1186 



 

 

 

Fig. 3a. Plot of return period vs. flood for different distributions using annual maximum floods. 

 

Fig. 3b. Plot of return period vs. flood for different distributions using peaks above threshold. 



 

 

 

Fig. 3c. Plot of return period vs. flood using empirical methods. 

To fit the probability distribution functions with the flood data at a certain significance level (α) × 100%, the 

test statistics and critical values were analyzed. The test statistics for different kinds of tests: Kolmogorov 

Smirnov (K-S), Anderson Darling (A-D), and chi-squared (χ2) should be less than the critical value corre-

sponding to significance level α. 

The following tables give the details of the probabilistic analysis carried out for annual maximum floods and 

peaks above threshold. 

Table 5. Fitness of hydrologic distributions for annual maxima. 

Test Distribution GEV LP 3 LN (3P) 
Gumbel 
Maximum 

Normal Weibull 3P 

K-S 

Test Statistic 0.0893 0.10369 0.10661 0.28203 0.28361 0.20639 

Critical value at α = 0.05 0.25438 0.25438 0.25438 0.25438 0.25438 0.25438 

Rank 1 2 3 5 6 4 

Decision at 5% signifi-
cance level 

Accept Accept Accept Reject Reject Accept 

A-D 

Test Statistic 0.30003 0.47387 0.37112 2.9499 3.8913 4.8144 

Critical value at α = 0.05 2.5018 2.5018 2.5018 2.5018 2.5018 2.5018 

Rank 1 3 2 4 5 6 

Decision at 5% signifi-
cance level 

Accept Accept Accept Reject Reject Reject 

χ2 

Test Statistic 0.20178 0.66937 1.7897 6.2978 5.3965 N/A 

Critical value at α = 0.05 5.9915 5.9915 5.9915 5.9915 5.9915 N/A 

Rank 1 2 3 5 4 N/A 

Decision at 5% signifi-
cance level 

Accept Accept Accept Reject Accept Reject 



 

 

Table 6. Fitness of hydrologic distributions for peaks above threshold. 

Test Distribution GEV LP 3 LN (3P) 
Gumbel 
Maximum 

Normal Weibull 3P 

K-S 

Test Statistic 0.06286 0.08828 0.08642 0.34283 0.32045 0.19077 

Critical value at α = 0.05 0.17091 0.17091 0.17091 0.17091 0.17091 0.17091 

Rank 1 3 2 6 5 4 

Decision at 5% signifi-
cance level 

Accept Accept Accept Reject Reject Reject 

A-D 

Test Statistic 0.2523 15.441 0.56032 9.5651 11.419 2.8666 

Critical value at α = 0.05 2.5018 2.5018 2.5018 2.5018 2.5018 2.5018 

Rank 1 6 2 4 5 3 

Decision at 5% signifi-
cance level 

Accept Reject Accept Reject Reject Reject 

χ2 

Test Statistic 3.366 N/A 6.7201 27.89 21.765 14.735 

Critical value at α = 0.05 11.07 N/A 11.07 7.8147 7.8147 9.4877 

Rank 1 N/A 2 5 4 3 

Decision at 5% signifi-
cance level 

Accept Reject Accept Reject Reject Reject 

Each distribution was assigned a rank, the first rank indicating the best fitting distribution, and the last indi-

cating the worst fitting among the distributions used for comparison. The N/A value indicates that the distri-

bution is not applicable for the given data at the 5% significance level and hence rejected. From Tables 5 and 

6, generalized extreme value and log Normal (3P) functions are accepted at a 95% confidence interval. 

5. Conclusion 

The frequency analysis of annual maximum and peak discharges above threshold for identifying the best fit 

probability distribution was performed using normal, Gumbel maximum, log Pearson type III, log Normal 

(3P), generalized extreme value, Hydest, Modified Hydest and Weibull 3P distributions. Most of the research 

on flood flow estimations has been conducted at gauged locations, with very little research for ungauged loca-

tions. Estimating flood discharges at different locations in an ungauged catchment requires a hydrologically 

similar reference catchment, the choice of which is a challenge. 

For our study basin, based on K-S, A-D and χ2 tests, we found that GEV and LN (3P) are well fitted com-

pared to other hydrological distributions. Selection of the suitable distribution also depends upon financial 

considerations as well as risk optimization. Designing hydraulic structures based on the design floods from 

the GEV distribution may not be cost-effective because of the large predicted flood values for larger return 

periods, so the LN (3P) can be suggested as an alternative. This study indicates that at least GEV and LN 

(3P) distributions are better suited for flood frequency analysis of an ungauged basin where the geographical 

and hydrological features are similar to that of the study basin. 

Nevertheless, the limited data available for both spatial and temporal resolution for the gauged basin should 

be acknowledged, and the hydrological similarities between the catchments should be carefully assessed; these 



 

 

characteristics can vary drastically from one place to another. A cross-check of transferred data should be 

done where another similar catchment is available to enhance the credibility of the data while selecting the 

appropriate method. Hydest and Modified Hydest are commonly used in Nepal for preliminary assessment of 

the hydrology of ungauged basins.  

The methodology we used in this study can be adopted to study the hydrology of an ungauged site in the ba-

sin where the hydrological and meteorological stations are very sparse. Because of epistemic as well as alea-

tory uncertainties, we cannot exactly quantify the hydrological characteristics of even the gauged river basins. 

Moreover, for ungauged basins, epistemic uncertainty is significantly high. Therefore, we should be skeptical 

about our probabilistic analysis while selecting the appropriate distributions, and thus a comparative analysis 

of hydrological distributions for different tests is recommended. Moreover, choosing a probability distribu-

tion function does not depend only on its goodness of fit but also on the optimization of hydraulic structures 

based on safety and cost. Therefore, this study helps in estimating return floods for various return years in 

ungauged basins and in selecting design flood for engineering structures, in developing hydrology models, ag-

riculture, flood management, river training works, and environmental studies. 
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